Structural Stability for Ill-Posed Problems in Banach Space

نویسندگان

  • Karen A. Ames
  • Rhonda J. Hughes
چکیده

We prove Hölder-continuous dependence results for the difference between solutions of certain ill-posed and approximate well-posed problems in both Hilbert and Banach spaces. We use operator-theoretic methods, including C-semigroups, to treat the abstract Cauchy problem du dt = Au, u(0) = χ, 0 ≤ t < T, where the operator −A is the infinitesimal generator of a holomorphic semigroup.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Kaczmarz Version of the REGINN-Landweber Iteration for Ill-Posed Problems in Banach Spaces

In this work we present and analyze a Kaczmarz version of the iterative regularization scheme REGINN-Landweber for nonlinear ill-posed problems in Banach spaces [Jin, Inverse Problems 28(2012), 065002]. Kaczmarz methods are designed for problems which split into smaller subproblems which are then processed cyclically during each iteration step. Under standard assumptions on the Banach space and...

متن کامل

The index function and Tikhonov regularization for ill-posed problems

In this paper, we study the regularizing properties of the conditional stability estimates in ill-posed problems. First, we analyze how conditional stability estimates occur, and which properties the corresponding index functions must obey. In addition, we adapt the convergence analysis for the Tikhonov regularization in Banach spaces where the difference between the approximated solution and t...

متن کامل

A regularization method for solving a nonlinear backward inverse heat conduction problem using discrete mollification method

The present essay scrutinizes the application of discrete mollification as a filtering procedure to solve a nonlinear backward inverse heat conduction problem in one dimensional space. These problems are seriously ill-posed. So, we combine discrete mollification and space marching method to address the ill-posedness of the proposed problem. Moreover, a proof of stability and<b...

متن کامل

Nonstationary iterated Tikhonov regularization for ill-posed problems in Banach spaces

Nonstationary iterated Tikhonov regularization is an efficient method for solving ill-posed problems in Hilbert spaces. However, this method may not produce good results in some situations since it tends to oversmooth solutions and hence destroy special features such as sparsity and discontinuity. By making use of duality mappings and Bregman distance, we propose an extension of this method to ...

متن کامل

Stochastic methods for ill-posed problems

This paper is devoted to the numerical analysis of ill-posed problems of evolution equations in Banach spaces using certain classes of stochastic one step methods. The linear stability properties of these methods are studied. Regularisation is given by the choice of the regularisation parameter as = p n ; where n is the stepsize and provides the convergence on smooth initial data. The case of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008